Курсовая работа - Грозовые явления
Курсовая работа - Грозовые явления. Скачивание файла. Введите число с картинки: Гроза, молния, шаровая молния, молниезащита, меры безопасности, стихийное бедствие, человеческие жертвы. В данной работе рассматривается влияние грозовых явлений на человека и окружающую среду. Приводятся данные природы грозовых явлений, правила поведения при грозе, первая медицинская помощь при поражении молнией, а также примеры самых известных гроз. Основная мысль нижеприведенной курсовой работы заключается в предотвращении жертв людей и уменьшении убытков от гроз и их последствий. Многоячейковые кластерные грозы. Изучение механизмов формирования гроз является важной задачей, как с фундаментальной, так и с прикладной точки зрения. Грозы являются важной составляющей глобальной электрической цепи, объединяющей атмосферу и Землю.
Электростатические силы существенно влияют на эволюцию динамических и микрофизических характеристик облаков и осадков, и, как следствие, на перенос тепла и влаги в атмосфере. Изучение гроз поможет составить полную картину целого ряда процессов, происходящих в атмосфере. Известно, что грозы оказывают существенное влияние на жизнь, здоровье и хозяйственную деятельность человека, причем, как правило, негативное. Поражение людей, хозяйственных объектов и летательных аппаратов молниями, помехи радиосвязи, перебои в электроснабжении - вот далеко не полный перечень негативных факторов, связанных с грозовыми разрядами. Обеспечение эффективной грозозащиты, в том числе путем активных воздействий на облака и осадки, возможно только при знании физических механизмов, ответственных за формирование гроз. К настоящему времени окончательная физическая картина формирования молниевых разрядов в конвективных облаках до сих пор еще не составлена.
Исследование гроз связано, прежде всего, с обеспечением безопасности жизнедеятельности человека. С развитием человеческой цивилизации и технической оснащенности жизни человека, явления природы несут угрозу и для человека и для его искусственной среды. В том числе, это относится и к грозам. Изучить природу грозовых явлений, правила поведения при грозе и оказание первой медицинской помощи. В данной работе использовались материалы и данные МЧС России, такие как учебники и методические пособия и энциклопедии, а так же переработанные Интернет данные.
Изложим основные представления, существующие на сегодняшний день. Стихийным бедствием называется природное явление значительного масштаба, в результате которого может возникнуть или возникла угроза жизни или здоровью людей, произойти разрушение или уничтожение материальных ценностей и компонентов окружающей природной среды. Чрезвычайная ситуация (ЧС) — обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Гроза - это атмосферное явление, связанное с развитием мощных кучево-дождевых облаков, сопровождающееся многократными электрическими разрядами (молниями) между облаками, облаками и земной поверхностью, шквалистым ветром, звуковыми явлениями (громом), ливневыми дождями, градом. Молния - это высоко-энергетический электрический разряд, возникающий вследствие установления разности электрических потенциалов (иногда до нескольких миллионов вольт) между поверхностями облачного покрова и земли. Молниезащита – комплекс мер, направленных на предупреждение ударов молнии. Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду. По поверхности планеты грозы распределяются неравномерно.
Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и субтропической зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78 % всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку . В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца.
На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер . Одним из проявлений грозы является шаровая молния. Общепринятого научного обоснования природы шаровой молнии пока нет. Шаровая молния может появиться неожиданно в любом месте. Многократными наблюдениями установлена связь шаровой молнии с линейными молниями. Шаровая молния может достигать размера футбольного мяча. Наряду с шаровидной, встречаются яйцеобразные и грушевидные формы. Она движется в пространстве медленно, с остановками, иногда взрывается, спокойно угасает, распадается на части или бесследно исчезает. «Живет» шаровая молния примерно одну минуту.
Во время движения шаровой молнии слышится легкий свист или шипение, порой она движется беззвучно. Цвет шаровой молнии может быть различным: красным, белым, синим, черным, перламутровым. Иногда шаровая молния вращается и искрит. Благодаря своей пластичности шаровая молния может проникнуть в помещение, в палатку, пещеру, в салон автомобиля. Траектория ее движения и варианты поведения непредсказуемы. При появлении шаровой молнии нельзя резко двигаться, пытаться поймать огненный шар или вытолкнуть его. Даже при соприкосновении шаровой Молнии с телом человека следует сохранять спокойствие и помнить, что она может исчезнуть так же неожиданно, как и появилась. Иногда шаровая молния взрывается, что может привести к получению травмы.
В этой ситуации пострадавшему необходимо оказать такую же помощь, как и в случае поражения линейной молнией или электрическим током. Распределение грозовых разрядов по поверхности Земли. Стадии развития грозового облака. Стадии развития грозового облака. Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть — в ледяном. Конвекция, приводящая к развитию гроз, возникает в следующих случаях: — при неравномерном нагревании приземного слоя воздуха над различной подстилающей поверхностью.
Например, над водной поверхностью и сушей из-за различий в температуре воды и почвы. Над крупными городами интенсивность конвекции значительно выше, чем в окрестностях города. — при подъеме или вытеснении теплого воздуха холодным на атмосферных фронтах. Атмосферная конвекция на атмосферных фронтах значительно интенсивнее и чаще, чем при внутримассовой конвекции. Часто фронтальная конвекция развивается одновременно со слоисто-дождевыми облаками и облачными осадками, что маскирует образующиеся кучево-дождевые облака. — при подъеме воздуха в районах горных массивов. Даже небольшие возвышенности на местности приводят к усилению образования облаков (за счет вынужденной конвекции). Высокие горы создают особенно сложные условия для развития конвекции и, почти всегда, увеличивают ее повторяемость и интенсивность. Все грозовые облака, независимо от их типа, последовательно проходят стадии кучевого облака, стадию зрелого грозового облака и стадию распада.
Классификация грозовых облаков. Одно время грозы классифицировались в соответствии с тем, где они наблюдались, — например, локальные, фронтальные или орографические. В настоящее время более принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза. Основным необходимым условием для образования грозовых облаков является состояние неустойчивости атмосферы, формирующее восходящие потоки. В зависимости от величины и мощности таких потоков формируются грозовые облака различных типов.
Цикл жизни одноячейкового облака. Одноячейковые кучево-дождевые (Cumulonimbus, Cb) облака развиваются в дни со слабым ветром в малоградиентном барическом поле. Их называют еще внутримассовыми или локальными грозами. Они состоят из конвективной ячейки с восходящим потоком в центральной своей части. Они могут достигать грозовой и градовой интенсивности и быстро разрушаться с выпадением осадков. Размеры такого облака: поперечный 5-20 км, вертикальный — 8-12 км, продолжительность жизни около 30 минут, иногда до 1 часа. Серьезных изменений погоды после грозы не происходит. Гроза начинается с возникновения кучевого облака хорошей погоды (Cumulus humulus).
При благоприятных условиях возникшие кучевые облака быстро растут как в вертикальном, так и в горизонтальном направлении, при этом восходящие потоки находятся почти по всему объему облака и увеличиваются от 5 м/с до 15-20 м/с. Нисходящие потоки очень слабы. Окружающий воздух активно проникает внутрь облака за счет смешения на границе и вершине облака. Облако переходит в стадию Cumulus mediocris. Образующиеся в результате конденсации мельчайшие водяные капли в таком облаке сливаются в более крупные, которые уносятся мощными восходящими потоками вверх. Облако еще однородное, состоит из капель воды, удерживаемых восходящим потоком, осадки — не выпадают. В верхней части облака при попадании частиц воды в зону отрицательных температур капли постепенно начинают превращаться в кристаллы льда. Облако переходит в стадию мощно-кучевого облака (Cumulus congestus). Смешанный состав облака приводит к укрупнению облачных элементов и созданию условий для выпадения осадков.
Такое облако называют кучево-дождевым (Cumulonimbus) или кучево-дождевым лысым (Cumulonimbus calvus). Вертикальные потоки в нем достигают 25 м/с, а уровень вершины достигает высоты 7-8 км Испаряющиеся частицы осадков охлаждают окружающий воздух, что приводит к дальнейшему усилению нисходящих потоков. На стадии зрелости в облаке одновременно присутствуют и восходящие и нисходящие воздушные потоки. На стадии распада в облаке преобладают нисходящие потоки, которые постепенно охватывают все облако. Многоячейковые кластерные грозы. Схема многоячейковой грозовой структуры. Это наиболее распространенный тип гроз связанный с мезомасштабными (имеющими масштаб от 10 до 1000км) возмущениями. Многячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовые ячейки находящиеся в стадии зрелости обычно располагаются в центральной части кластера, а распадающиеся ячейки с подветренной стороны кластера.
Они имеют поперечные размеры 20—40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Каждая отдельная ячейка в многоячейковом кластере находится в зрелом состоянии около 20 минут; сам многоячейковый кластер может существовать в течение нескольких часов. Данный тип грозы обычно более интенсивен, чем одноячейковая гроза, но много слабее суперячейковой грозы. Многоячейковые линейные грозы (линии шквалов) Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как темная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих/нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни, но больше они известны как системы, создающие сильные нисходящие потоки. Линия шквалов близка по свойствам к холодному фронту, но является локальным результатом грозовой деятельности. Часто линия шквалов возникает впереди холодного фронта. На радарных снимках эта система напоминает изогнутый лук (bow echo). Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже. Вертикальная и горизонтальная структура суперячейкового облака. Суперячейка — наиболее высокоорганизованное грозовое облако. Суперячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперячейковое облако схоже с одноячейковым тем, что оба имеют одну зону восходящего потока. Различие состоит в том, что размер ячейки огромен: диаметр порядка 50 км, высота 10-15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперячейковом облаке значительно выше, чем в других типах грозовых облаков: до 40 - 60 м/с. Основной особенностью, отличающей суперячейковое облако от облаков других типов является наличие вращения. Вращающийся восходящий поток в суперячейковом облаке (в радарной терминологии называемым мезоциклоном )создает экстремальные по силе погодные явления, такие, как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи . Окружающие условия являются основным фактором в образовании суперячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, необходим ветер переменного направления, вызывающий вращение. Однако главным условием для образования суперячейки является сдвиг ветра в средней тропосфере. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделенными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперячейкового облака наблюдается слабый дождь Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока. Наиболее опасные условия наблюдаются неподалеку от зоны основного восходящего потока (обычно смещенные к задней части грозы). Физические характеристики грозовых облаков. Самолетные и радарные исследования показывают, что единичная грозовая ячейка обычно достигает высоты порядка 8 — 10 км и живет порядка 30 минут. Изолированная гроза обычно состоит из нескольких ячеек находящихся в различных стадиях развития и длится порядка часа. Крупные грозы могут достигать в диаметре десятки километров, их вершина может достигать высоты свыше 18 км, и они могут длиться много часов. Восходящие и нисходящие потоки. Восходящие и нисходящие потоки в изолированных грозах обычно имеют диаметр от 0.5 до 2.5 км и высоту от 3 до 8 км. Иногда диаметр восходящего потока может достигать 4 км. Вблизи поверхности земли потоки обычно увеличиваются в диаметре, а скорость в них падает по сравнению с выше расположенными потокам. Характерная скорость восходящего потока лежит в диапазоне от 5 до 10 м/с, и доходит до 20 м/с в верхней части крупных гроз. Исследовательские самолеты, пролетающие сквозь грозовое облако на высоте 10 000 м, регистрируют скорость восходящих потоков свыше 30 м/с. Наиболее сильные восходящие потоки наблюдаются в организованных грозах. В некоторых грозах возникают интенсивные нисходящие воздушные потоки, создающие на поверхности земли ветер разрушительной силы. В зависимости от размера такие нисходящие потоки называются шквалами или микрошквалами. Шквал диаметром более 4 км может создавать ветер до 60 м/с. Микрошквалы имеют меньшие размеры, но создают ветер скоростью до 75 м/с. Если порождающая шквал гроза образуется из достаточно теплого и влажного воздуха, то микрошквал будет сопровождаться интенсивным ливневым дождем. Однако, если гроза формируется из сухого воздуха, осадки во время выпадения могут испариться (испаряющиеся в воздухе полосы осадков или virga) и микрошквал будет сухим. Нисходящие воздушные потоки являются серьезной опасностью для самолетов, особенно во время взлета или посадки, так как они создают вблизи земли ветер с сильными внезапными изменениями скорости и направления. В общем случае, активное конвективное облако будет подниматься до тех пор, пока оно не утратит плавучесть. Потеря плавучести связана с нагрузкой, создаваемой образовавшимися в облачной среде осадками, или смешением с окружающим сухим холодным воздухом, или комбинацией этих двух процессов. Рост облака также может быть остановлен слоем блокирующей инверсии, то есть слоем, где температура воздуха растет с высотой. Обычно грозовые облака достигают высоты порядка 10 км, но иногда достигают высот более 20 км. Когда влагосодержание и нестабильность атмосферы высоки, то при благоприятном ветре облако может вырасти до тропопаузы, слоя отделяющего тропосферу от стратосферы. Тропопауза характеризуется температурой, остающейся приблизительно постоянной с ростом высоты и известной как область высокой стабильности. Как только восходящий поток начинает приближаться к стратосфере то довольно скоро воздух в вершине облака становится холоднее и тяжелее окружающего воздуха и рост вершины останавливается. Высота тропопаузы зависит от широты местности и от сезона года. Она варьируется от 8 км в полярных регионах до 18 км и выше вблизи экватора. Когда кучевое конвективное облако достигает блокирующего слоя инверсии тропопаузы, оно начинает растекаться в стороны и образует характерную для грозовых облаков «наковальню». Ветер, дующий на высоте наковальни, обычно сносит облачный материал по направлению ветра. Самолет, пролетающий сквозь грозовое облако(залетать в кучеводождевые облака запрещается), обычно попадает в болтанку, бросающую самолет вверх, вниз и в стороны под действием турбулентных потоков облака. Атмосферная турбулентность создает ощущение дискомфорта для экипажа самолета и пассажиров и вызывает нежелательные нагрузки на самолет. Турбулентность измеряется разными единицами, но чаще ее определяют в единицах g — ускорения свободного падения (9.8 метров в секунду за секунду). Шквал в один g создает опасную для самолетов турбулентность. В верхней части интенсивных гроз зарегистрированы вертикальные ускорения до трех g. Движение грозового облака относительно земли определяется, прежде всего, взаимодействием восходящего и нисходящего потоков облака с несущими воздушными потоками в средних слоях атмосферы, в которых развивается гроза. Скорость перемещения изолированной грозы обычно порядка 20 км/час, но некоторые грозы двигаются гораздо быстрее. В экстремальных ситуациях грозовое облако может двигаться со скоростями 65 — 80 км/час - во время прохождения активных холодных фронтов. В большинстве гроз по мере рассеивания старых грозовых ячеек последовательно возникают новые грозовые ячейки. При слабом ветре отдельная ячейка за время своей жизни может пройти совсем небольшой путь, меньше чем пара километров; однако в более крупных грозах новые ячейки запускаются нисходящим потоком, вытекающим из зрелой ячейки, что дает впечатление быстрого движения не всегда совпадающего с направлением ветра. В больших многоячейковых грозах существует закономерность, когда новая ячейка формируется справа по направлению несущего воздушного потока в северном полушарии и слева от направления несущего потока в Южном полушарии. Энергия, которая приводит в действие грозу, заключена в скрытой теплоте, высвобождающейся, когда водяной пар конденсируется и образует облачные капли. На каждый грамм конденсирующейся в атмосфере воды высвобождается приблизительно 600 калорий тепла. Когда водяные капли замерзают в верхней части облака, дополнительно высвобождается еще около 80 калорий на грамм. Высвобождающаяся скрытая тепловая энергия частично преобразуется в кинетическую энергию восходящего потока. Грубая оценка общей энергии грозы может быть сделана на основе общего количества воды выпавшей в виде осадков из облака. Типичной является энергия порядка 100 миллионов киловатт-часов, что по приблизительной оценке эквивалентно ядерному заряду в 20 килотонн (правда эта энергия выделяется в гораздо большем объеме пространства и за гораздо большее время). Большие многоячейковые грозы легко могут обладать энергией и в 10 и в 100 раз большей. Электрическая структура грозового облака. Структура зарядов в грозовых облаках в различных регионах. Распределение и движение электрических зарядов внутри и вокруг грозового облака является сложным непрерывно меняющимся процессом. Тем не менее, можно представить обобщенную картину распределения электрических зарядов на стадии зрелости облака. Доминирует положительная дипольная структура, в которой положительный заряд находится в верхней части облака, а отрицательный заряд находится под ним внутри облака. В основании облака и под ним наблюдается нижний положительный заряд. Атмосферные ионы , двигаясь под действием электрического поля, формируют на границах облака экранирующие слои, маскирующие электрическую структуру облака от внешнего наблюдателя. Измерения показывают, что в различных географических условиях основной отрицательный заряд грозового облака расположен на высотах с температурой окружающего воздуха от ?5 до ?17 °C. Чем больше скорость восходящего потока в облаке, тем на большей высоте находится центр отрицательного заряда. Плотность объемного заряда лежит в диапазоне 1-10 Кл/км?. Существует заметная доля гроз с инверсной структурой зарядов: — отрицательным зарядом в верхней части облака и положительным зарядом во внутренней части облака, а также со сложной структурой с четырьмя и более зонами объемных зарядов разной полярности. Для объяснения формирования электрической структуры грозового облака предлагалось много механизмов, и до сих пор эта область науки является областью активных исследований. Основная гипотеза основана на том, что если более крупные и тяжелые облачные частицы заряжаются преимущественно отрицательно, а более легкие мелкие частицы несут положительный заряд, то пространственное разделение объемных зарядов возникает за счет того, что крупные частицы падают с большей скоростью, чем мелкие облачные компоненты. Этот механизм, в целом, согласуется с лабораторными экспериментами, которые показывают сильную передачу заряда при взаимодействии частиц ледяной крупы ( крупа — пористые частицы из замерзших водяных капелек) или града с ледяными кристаллами в присутствии переохлажденных водяных капель. Знак и величина передаваемого при контактах заряда зависят от температуры окружающего воздуха и водности облака, но также и от размеров ледяных кристаллов, скорости столкновения и других факторов. Возможно также действие и других механизмов электризации. Когда величина накопившегося в облаке объемного электрического заряда становится достаточно большой, между областями заряженными противоположным знаком происходит молниевый разряд. Разряд может произойти также между облаком и землей, облаком и нейтральной атмосферой, облаком и ионосферой. В типичной грозе от двух третей до 100 процентов разрядов приходятся на внутриоблачные разряды, межоблачные разряды или разряды облако — воздух. Оставшаяся часть — это разряды облако-земля. В последние годы стало понятно, что молния может быть искусственно инициирована в облаке, которое в обычных условиях не переходит в грозовую стадию. В облаках, имеющих зоны электризации и создающих электрические поля, молнии могут быть инициированы горами, высотными сооружениями, самолетами или ракетами оказавшимися в зоне сильных электрических полей. Молния может поразить человека в следующих ситуациях: — в результате прямого попадания; — при прохождении электрического разряда в непосредственной в близости (около 1 м) от человека; — при распространении электричества в сырой земле или в воде. Правила поведения во время гроз. Гроза относится к быстротекущим, бурным и чрезвычайно опасным природным явлениям природы. Предотвратить ее развитие невозможно. Для уменьшения случаев поражения человека молнией необходимо знать и соблюдать основные правила и требования безопасности в зависимости от конкретных условий. В квартире, доме, здании: ликвидируйте сквозняки, плотно закройте окна, дымоходы, отсоедините электроприборы от источников питания, отключите наружную антенну, прекратите телефонные разговоры, не располагайтесь у окна, печи, камина, массивных металлических предметов, на чердаке или крыше дома. В лесу : постарайтесь встретить грозу на поляне, не ищите защиты под кронами или отдельно стоящих деревьев, не прислоняйтесь к их стволам, не располагайтесь у костра: столб горячего воздуха хороший проводник электричества, не влезайте на деревья. На открытом месте: следите за тем что бы вы не оказались самой высокой точкой в окрестности, не располагайтесь на возвышенностях, возле металлических заборов, опор линии электропередач, под проводами, не ходите босиком, не прячьтесь в стогах сена, не поднимайте над собой токопроводящие предметы. Прекратите спортивные игры, уйдите в укрытие, не располагайтесь плотной группой в потенциально опасном месте. В горах: незамедлительно покиньте опасную зону, прекратите движение, исключите контакт тела с мокрыми скалами, тесными щелями, навесами и гротами, по возможности изолируйте себя от мокрой земли и скал, используя обувь на резиновой подошве, сухую палатку, спальный мешок, рюкзак, веревку, ствол дерева. Постарайтесь сохранить сухими одежду, обувь, снаряжение, продукты питания, медикаменты. Металлические предметы расположите на расстоянии 15-20 метров от места нахождения людей. В палатке: установите палатку на расстоянии не менее 2 метров от ствола дерева и его веток, дополнительно закрепите палатку, накройте ее водонепроницаемой пленкой, металлические предметы расположите на расстоянии 10-15 метров от палатки. Плотно закройте все отверстия, в том числе и вход, наденьте сухую одежду и лягте. В грозоопасной зоне в козырек палатки можно вплести медную ленту и заземлить ее с помощью вбитого в землю металлического стержня. Первая помощь при поражении молнией. Основными травмами при поражении молнией являются: электротравма, паралич, ожог, потеря зрения и слуха. Нередко к ним добавляются сопутствующие травмы: ушибы, переломы, депрессия, стресс. Несмотря на кратковременное воздействие молнии, у человека может быть парализована работа мозга и сердца, нередки сильные ожоги и летальный исход. Существует ошибочное мнение, что пораженного молнией человека необходимо на время закопать в землю. НЕ ДЕЛАЙТЕ ЭТОГО НЕ В КОЕМ СЛУЧАЕ! Такие действия ухудшают состояние пострадавшего и могут ускорить его гибель. Важно. Если рядом с вами оказался человек, пораженный или контуженный молнией, не бойтесь дотрагиваться до него — заряда в теле пострадавшего не остается. Надо помнить, что далеко не всякое поражение молнией смертельно! Человеку можно помочь, оказав первую помощь: - быстро определите состояние пострадавшего. - незамедлительно проведите реанимационные мероприятия: искусственное дыхание, непрямой массаж сердца. - обработайте места ожогов и сопутствующие раны. - дайте анальгин или солпадеин, дайте противошоковое средство. - срочно доставьте пострадавшего в лечебное учреждение. Широко известны факты гибели людей от молний такие как случай гибели от разрыва шаровой молнии ученого Г. Рихмана, который произошел в лаборатории во время грозы при изучении атмосферных электрических явлений. Несчастье произошло летом 1752 г. в Санкт-Петербурге. 1715 г. Вблизи острова Котлин молния ударила в носовую часть русского 64-пушечного корабля «Нарва». Взорвался пороховой запас, что послужило причиной гибели корабля и команды. 1753 г. Во время грозы от разрыва шаровой молнии при проведении эксперимента в лаборатории погиб профессор Г-В. Рихтер. 1856 г. Молния ударила в церковь Святого Иоанна на острове Родос, где находился склад пороха. В результате взрыва погибло 4 тысячи человек. 1901 г. Над городом Уральском разразилась гроза. Шаровая молния проникла в дом, где тяжело ранила несколько человек, одна девушка погибла. 1959 г. Бразилия. Во время футбольного матча молния убила 2 и ранила 17 футболистов. 1962 г. Молния попала в английский корабль «Аругуарри». Судно затонуло. Экипаж и пассажиры погибли. 17 августа 1978 г . группа альпинистов совершала спуск после восхождения на вершину в горах Западного Кавказа. Во время ночевки на высоте 3900 метров в палатку залетела шаровая молния. Ярко-желтый шар величиной с теннисный мяч проникал в спальник к каждому альпинисту, причиняя людям страшные травмы. Один человек погиб. 1993 г. Молния попала в американский самолет «Боинг-797». В результате пожара и падения все пассажиры и экипаж погибли. 1998 г. Белоруссия. За одну неделю июня от молний погибло 7 человек. 27 июня 2009 г. После выпускного вечера ребята отправились встречать рассвет на берег моря. Когда выпускники поднялись на одну из сопок, ударила молния. Алексей Зась и Татьяна Давыдова проходили в этот момент под линией электропередач, они погибли на месте. Как уже упоминалось, процессы формирования гроз являются весьма сложными и не до конца изученными. По ряду вопросов, связанных с этой темой, существует много разнообразных мнений. Поэтому, как и много лет назад существует угроза человеческой жизни и природе. Гроза относится к быстротекущим, бурным и чрезвычайно опасным природным явлением. Предотвратить ее развитие невозможно. Где бы ни находился человек, есть опасность поражения молнией и чтобы не подвергать свою жизнь лишнему риску важно знать правила поведения и не растеряться в нужную минуту. Поэтому, в данной курсовой работе хочу выделить методы защиты от гроз и первую помощь при поражении молнией. Гроза чрезвычайно опасное явление, но методы защиты от гроз существуют. 1. Учебник спасателя / С. К. Шойгу, М. И. Фалеев, Г. Н. Кириллов и др.; под общ. ред. Ю. Л. Воробьева. — 2-е изд., перераб. и доп. — Краснодар: «Сов. Кубань», 2002. — 528 с.— ил. 2. Гражданская защита. Энциклопедия / Под общ. ред. С.К. Шойгу; МЧС России. — М.: Московская типография № 2, 2006. — с. 568, илл. 3. Гражданская защита. Энциклопедия Т. II / Под общ. ред. С. К. Шойгу; МЧС России. — М.: ЗАО ФИД «Деловой экспресс», 2007. — 548 с., илл. 4. «Безопасность жизнедеятельности» под общей редакцией доктора техн. наук, проф. С.В.Белова. Москва, «Высшая школа» 2000 г. 5. «География: природа России». Учебник для 8 класса. Э.М.Раковская.