Регуляторы давления газа

Регуляторы давления газа

Выбор регуляторов давления газа необходимо производить с учетом следующих факторов:

— тип объекта регулирования;

— максимальный и минимальный требуемый расход газа;

— максимальное и минимальное входное давление;

— максимальное и минимальное выходное давление

— точность регулирования (максимально допустимое отклонение регулируемого давления и время переходного процесса регулирования);

— необходимость полной герметичности при закрытии регулятора;

— акустические требования к работе регуляторов с высокими входными давлениями и большими расходами газа.

Основным требованием при подборе регулятора давления http://phoenix-gaz.com/catalog/regulyatory-davleniya-gaza/ является обеспечение устойчивости его работы на всех возможных режимах, чего проще всего добиться правильным выбором регулятора для того или иного объекта. Для тупикового газопровода (с отбором газа в конце газопровода) следует применять статические регуляторы прямого действия. В случае больших расходов газа — непрямого действия. Для кольцевых и разветвленных газовых сетей, учитывая их способность к самовыравниванию, можно использовать любые типы регуляторов, но так как эти сети имеют обычно большие расчетные расходы, то лучше применять астатические регуляторы непрямого действия (с пилотом). Эти регуляторы позволяют более точно поддерживать давление после себя.

Неравномерность регулирования у статических регуляторов давления прямого действия — ±(0–20) %, статических непрямого действия (с пилотом) и астатических — ±(5–10) %.

При подключении к сетям высокого давления, давление в которых имеет значительные колебания, а также учитывая практически существующие конструкции регуляторов, может оказаться, что одноступенчатое снижение давления не применимо. В этом случае следует либо выбирать двухступенчатый регулятор давления, либо применить двухступенчатое редуцирование, при котором первым регулятором давление снижается до промежуточного значения, а вторым — до необходимого с высокой точностью.

При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора. Возникновение шумов вызвано газодинамическими колебательными процессами у регулирующих органов и стенок регуляторов. При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, сильной вибрации регулятора. Наиболее эффективный метод снижения амплитуд колебаний — установка гасителя шума (перфорированного патрубка) сразу после редуцирования газа.

Пропускную способность регуляторов давления обычно определяют по аналогии с истечением газа через суживающееся сопло или сопло постоянного сечения, считая процесс адиабатическим. При постоянном входном давлении Р1 скорость истечения и объемный расход растут с уменьшением противодавления (выходного давления) Р2 только до достижения отношения Р2/Р1 определенного для данного газа значения, которое называют критическим (Р2 и Р1 — абсолютные давления).

Для природного газа с показателем адиабаты К = 1,31 критическое отношение можно принимать равным 0,5. То есть в регуляторе давления, который поддерживает низкое давление 2000 Па (200 мм вод. ст.), при входном избыточном давлении в 0,1 МПа и более наступает критический режим истечения газа. При этом скорость газа, проходящего через седло, постоянна и равна скорости звука в данном газе, достигнутой при критическом отношении давлений.

Объемный расход газа при рабочих условиях остается неизменным и при дальнейшем понижении давления Р2 и повышении Р1. Однако при этом изменяется массовый расход газа, а также объемный расход, приведенный к нормальным физическим условиям.

При докритическом режиме истечения пропускная способность определяется квадратичной зависимостью разности входного и выходного давлений (перепада давления) ΔР = Р1 — Р2. При критическом и сверхкритическом режимах пропускная способность зависит только от входного давления и прямо пропорциональна ему.

Пропускную способность регулятора давления с односедельным затвором можно определить по формуле:

Формула расчета пропускной способности регулятора давления с односедельным затвором

где Q0 — расход газа через регулятор, м3/ч (при Р = 0,1013 МПа, t = 0 °С);

φ — коэффициент, зависящий для данного газа от Р2/Р1 (рис. 3.4);

α — коэффициент расхода (приводится в технической характеристике регулятора);

fc — площадь седла, см2 (если шток клапана проходит через седло, то площадь седла надо рассчитывать за вычетом площади сечения штока);

Р1, Р2 — абсолютное давление, МПа;

ρ0 — плотность газа, кг/м3 (при Р = 0,1013 МПа, t = 0 °С).

Приняв плотность природного газа при н. у. равной 0,73 кг/м3, получим:

Q=1866φαP1fc

При температуре газа t1 = +20 °С ошибка формул составит 3,5 %.

Выбор регулятора производят из условия, что его пропускная способность должна быть на 15–20 % больше максимального часового расхода газа потребителем. Это означает, что регулятор будет загружен при максимальном газопотреблении не более, чем на 80–85 %, а при минимальном газопотреблении — не менее, чем на 10 %. Если это условие не будет выполняться, то при максимальном отборе газа регулирующий орган будет полностью открыт и не сможет выполнять функции регулирования. Регулирование обеспечивается только тогда, когда регулирующий орган и исполнительный механизм находятся в подвижном состоянии. При снижении отбора газа ниже предельного могут возникнуть автоколебания (пульсации, вибрации) клапана.