Резанов И
Мировые катастрофы. Великие катастрофы в истории Земли. Наша планета существует уже 4,5 млрд. лет. За этот огромный интервал времени на ее поверхности постоянно происходили сложные физико-химические процессы, возникла жизнь, сформировалась атмосфера, содержащая кислород, развились сложно организованные животные и растения. Все эти изменения происходили очень медленно, растягиваясь на сотни миллионов лет. Но на фоне постепенных (эволюционных) процессов случались и явления катастрофического характера, вызванные силами, таившимися в глубинах Земли или действовавшими из космоса. Игнорировать сам факт существования и роль таких событий в истории Земли было бы в наше время величайшей ошибкой. Следы катастроф тем труднее установить, чем они древнее. С течением времени «залечиваются» раны на теле Земли, появившиеся в результате гигантских землетрясений, стираются следы упавших метеоритов. Поэтому большинство катастроф в истории Земли, в частности гибель Атлантиды, остаются гипотетическими. В настоящее издание автор счел целесообразным включить некоторые материалы об этом событии из его книги «Атлантида: фантазия или реальность?
» (М., «Наука», 1975). Изучение катастрофических явлений позволяет объяснить некоторые особенности эволюции нашей планеты. В настоящее время паука и техника достигли такого высокого уровня, что мы уже можем предугадывать многие природные катастрофы, а в скором времени, несомненно, научимся и предупреждать их. Описывая наиболее впечатляющие события из жизни пашей планеты, мы познакомим читателя с геологической историей Земли, расскажем об увлекательной профессии геолога, геофизика и географа — специалистов, изучающих природные процессы и разрабатывающих методы их предсказания. Образование и эволюция Земли. Согласно современной теории происхождения планет, разработанной академиком О.Ю. Шмидтом, Земля образовалась путем аккумуляции твердого рассеянного вещества в виде частиц и тел различных размеров. Постепенно мельчайшие частицы и метеориты различных размеров объединялись в более крупные тела — астероиды, которые затем падали на образующуюся Землю. Советский астроном В.С. Сафронов рассчитал возможные размеры и массы тел, падавших на Землю. Оказалось, что значительная часть нашей планеты образовалась за счет крупных тел. Массы наибольших тел, падавших на Землю, были оценены по наблюдаемому сейчас наклону оси вращения Земли. Как известно, вращение планет состоит из двух компонентов разной природы: регулярного прямого вращения, связанного с вращением всей системы, и нерегулярного, случайного, возникшего в результате падения на планету крупных тел. Последнее определяет наклон оси ее вращения. В.С. Сафронов показал, что при существующем сейчас угле наклона земной оси 23,5° массы наибольших тел, падавших на Землю при ее образовании, достигали 1/1000 массы Земли. Следовательно, поперечник их мог быть до 1000 км. Трудно вообразить масштабы катастрофы, если тело весом 1 000 000 000 млрд. т, падающее со скоростью 11 км/с, столкнется с Землей. Очень отдаленное представление о масштабе этого явления дают лунные кратеры и моря. Заметим, что лунные моря образовались в результате падения тел с поперечником всего несколько десятков километров, т. е. по массе в десятки тысяч раз меньше тех, которые падали на Землю. Выделившейся при ударе энергии достаточно, чтобы нагреть на сотни градусов слой толщиной больше поперечника упавшего тела. Следовательно, при диаметре астероида 1000 км глубина разогрева достигала 1000 км. В.С. Сафронов полагает, что заметная часть энергии падения больших тел оставалась внутри Земли и могла нагреть верхние ее слои более чем на 1000 °C. Случайные явления сыграли огромную роль в жизни нашей планеты. Будь у крупнейших астероидов, падавших на Землю, другие размеры, скорость или угол падения, паша планета имела бы иной наклон оси, а значит, ширина тропического и умеренных поясов и полярных кругов была бы иной. Формирование Земли как планеты, сопровождавшееся падением астероидов и метеоритов, продолжалось около 100 млн. лет. По сравнению с длительностью жизни человека срок этот огромен. Но если мы вспомним, что возраст Земли равен 4,5–5 млрд. лет, то получается, что образование ее из астероидов и метеоритов заняло лишь 2 % времени от всей жизни нашей планеты. Рой астероидов, окружавших Землю, за 100 млн. лет рассеялся. Падения метеоритов стали реже. Масса планеты достигла примерно тех размеров, какие она имеет сейчас. Первая фаза ее развития закончилась, наступила следующая, о которой мы знаем еще очень мало. По теории О.Ю. Шмидта, Земля образовалась в результате падения холодных частиц и метеоритов. Следовательно, в этот начальный период развития она не была раскаленной. Но вот новейшие результаты изучения Луны заставили усомниться в таком выводе. Исследование лунных пород показало, что в начальный период своего развития Луна прошла через состояние общего плавления. Если сравнительно небольшое по размерам небесное тело — Луна — было сильно разогрето 5–4 млрд. лет назад, то есть основания считать, что и планета Земля, которая значительно больше Луны по размерам и потому медленнее отдает тепло, также была разогретой. Это подтверждают исследования древнейших пород с возрастом 4–3 млрд. лет, обнажающихся на земной поверхности в Гренландии, Южной Сибири и в ряде других мест. И хотя они сильно изменены более поздними геологическими процессами, все же до некоторой степени удается восстановить их химический состав и условия образования. Оказывается, что первоначально это были вулканические породы, возникшие в результате излияния на земную поверхность базальтовых лав. Сейчас все больше специалистов склоняются к мнению, что первоначально недра Земли были разогреты. На глубине нескольких десятков километров существовал слой, где породы были в расплавленном состоянии. Эти расплавы изливались на земную поверхность. Таким образом, стадия «бомбардировки» Земли сменилась более продолжительной по времени стадией почти сплошных вулканических излияний. В этот период жизни нашей планеты, который длился, по-видимому, много сотен миллионов лет, ее поверхность была почти сплошь усеяна вулканами, извергавшими лаву. Излившаяся лава застывала, отдавая в мировое пространство тепло. Так образовалась первичная земная кора. Температура на поверхности Земли понижалась, и наступил момент, когда выделявшиеся из недр Земли водяные пары конденсировались в жидкую воду. С этого времени начинается геологическая стадия развития Земли (рис. 1). Рис. 1. Важнейшие стадии эволюции Земли. Геологические процессы можно разделить на два типа. С одной стороны, это подземные вулканические и иные силы, приводящие к излиянию лав и подъему или опусканию земной коры; с другой — процессы разрушения, эрозия горных пород, перенос их водами и ветром по земной поверхности. Пока на Земле вода была только в парообразном состоянии, переноса горных пород практически не происходило. Вулканические горы еще не размывались, а пониженные места между вулканами не заполнялись осадками. С появлением на Земле жидкой воды впервые возникли осадочные породы, отлагавшиеся в неглубоких еще тогда морских водоемах. В результате поверхность планеты стала более ровной, поскольку высокие вулканы разрушались и постепенно исчезали с земной поверхности, если подземный очаг переставал работать. Хотя поверхность планеты уже остыла, на небольшой глубине земные породы были по-прежнему разогреты и потому достаточно пластичны. В этот период земная кора еще не трескалась и крупных разломов не существовало. Следующая стадия эволюции коры начинается 3–2 млрд. лет назад. К этому времени земная кора уже остыла на всю глубину (20–40 км) и приобрела необходимую хрупкость. В местах максимальных напряжений земная кора стала трескаться. Возникли глубинные разломы. Вдоль них образовались прогибы, где накапливались многокилометровые толщи осадков. С изучения осадочных горных пород и началось формирование геологии как науки. Самым крупным достижением геологической мысли было создание геологической карты. В основу ее положен исторический принцип — одинаковым цветом на карте показаны породы одного геологического возраста. По сохранившимся в породах остаткам существовавших ранее животных и растений история нашей планеты разделена на несколько эр: архейскую, протерозойскую, палеозойскую, мезозойскую и кайнозойскую. Последние три эры в свою очередь делятся на геологические периоды. Разработанные в XX в. методы определения абсолютного возраста горных пород по скорости радиоактивного распада показали, что длительность эр неодинакова (табл. 1). Многообразная гамма цветов геологической карты рассказывает о сложной и богатой истории Земли. Обширные пространства европейской части СССР покрыты овалами, полосами оранжевого, зеленого и коричневого цветов. По крупным рекам зеленые и синие полоски образуют острые петли, вытянутые против течения. Такой рисунок свойствен платформе. Геологи называют платформой область с двухъярусным строением: внизу — смятый в складки плотный фундамент, выше — полого лежащий рыхлый осадочный чехол. После образования фундамента движения на платформах были вялыми, малоинтенсивными. Они привели лишь к пологим изгибам его поверхности и осадочного чехла. В пределах платформ выделяют два вида структур — щиты и плиты. Первые вплоть до настоящего времени испытывали поднятия; в их пределах осадочный чехол отсутствует. На щитах длительно (до миллиарда лет) идет размыв кристаллических пород фундамента, благодаря чему на дневную поверхность выходят породы с возрастом 2–4 млрд. лет. Плитами называются пространства платформ, фундамент которых перекрыт осадочным слоем. Крупные отрицательные структуры (прогибы) в пределах плит именуются синеклизами. По форме синеклиза напоминает пологое блюдце. Второй класс структур земной коры — геосинклинали. Важнейшая отличительная их черта — много большая контрастность движений по сравнению с платформами. На геологической карте геосинклинальные зоны выходят в виде протяженных узких полос разного цвета. Особенно наглядно видно это на примере Урала, который, как цветной шарф, пересекает с севера на юг нашу страну. Образованию геосинклинального пояса предшествовало заложение системы разломов большей протяженности (тысячи километров) и глубокого заложения. В результате поверхность земного шара оказалась состоящей из «обломков» древних платформ, разделенных геосинклинальными поясами (рис. 2). Наиболее протяженным является Тихоокеанский пояс, обрамляющий с востока, севера и запада впадину Тихого океана. Следующий по величине — Средиземноморский пояс. Он начинается в районе Гибралтарского прогиба и протягивается через Средиземное море, Кавказ, Памир и Гималаи в Зондский архипелаг, где сливается с Тихоокеанским поясом. В пределах нашей страны находится большая часть Урало-Монгольского геосинклинального пояса. В него входят Урал, геосинклинальные структуры Казахстана, Тянь-Шаня, Алтая, Саян и большая часть Монголии. Этот пояс также стыкуется с Тихоокеанским. Кроме того, выделяют Атлантический и Арктический пояса, но они в значительной степени перекрыты океанами и на дневную поверхность выходят лишь их краевые части. Рис. 2. Схема расположения древних платформ и складчатых поясов земной коры (по М.В. Муратову) Платформы: 1 — Североамериканская; 2 — Восточно-Европейская (Русская); 3 — Сибирская; 4 — Южноамериканская (Бразильская); 5 — Африканская; 6 — Индийская; 7 — Китайская; 8 — Австралийская. Между складчатыми поясами расположены платформы, которые обычно разделяются на две группы: северную и южную. Северная именуется Лавразиатской. В нее входят три платформы: Североамериканская, занимающая большую часть континента Северной Америки и Гренландии; Восточно-Европейская, которая включает почти всю Европу (ее также называют Русской платформой), Сибирская, протягивающаяся от Енисея на западе до Алдана и Лены на востоке. Южная группа платформ именуется Гондванской. Геологи установили, что в конце палеозойской и в начале мезозойской эры все платформы южного полушария (Бразильская, Африканская, Индийская и Австралийская) развивались очень сходно — были близкие климатические условия, почти тождественные флора и фауна. Значит, 300–200 млн. лет назад платформы южного полушария составляли единый гигантский материк — Гондвану. Геологи и геофизики ведут жаркие споры о том, в результате каких причин материки оказались разобщенными океанами. Одни считают, что это произошло вследствие раздвигания в стороны единого праконтинента Гондваны; другие допускают, что части Гондваны были погружены, а затем залиты морем. Как уже отмечалось выше, геосинклинальные пояса состоят из серии протяженных глубинных разломов. Вдоль таких глубинных разломов возникли геосинклинальные прогибы, в которых накопилось до 10–30 км осадков. Пространства между геосинклинальными прогибами оставались относительно инертными (их именуют срединными массивами). Зоны глубинных разломов служили местами, где происходил обмен веществом между корой и более глубокими слоями Земли. Из ее недр в результате происходящего в них плавления поступали на поверхность расплавленные лавы. Но в тех же приразломных зонах осуществлялся и обратный процесс — погружение осадков в глубь Земли. Благодаря чередованию эпох сжатия и растяжения давление в зоне разлома сильно колебалось. При падении давления материал коры погружался, а при последующем возрастании уплотнялся. Геосинклинальные прогибы развивались в течение одного-двух геотектонических этапов длительностью по 180–200 млн. лет, после чего прогибание обычно прекращалось, сменяясь горообразованием и складчатостью. Наступил режим, близкий к платформенному. Через определенный промежуток времени могла заложиться новая система разломов или же частично ожить ранее существовавшая, и геосинклинальный режим возобновлялся. Возникшие глубинные разломы с равным успехом рассекали как древние платформенные территории, так и пространства, ранее занятые геосинклиналями. Геосинклинальный и платформенный режимы могли чередоваться во времени. Хотя геологи обычно противопоставляют геосинклинали платформам, становится все очевиднее, что это лишь крайние члены последовательного ряда геологических структур. В пределах платформ обнаружены впадины, например Прикаспийская синеклиза на Восточно-Европейской платформе, где мощность осадков достигает 25 км, как и в геосинклинальных прогибах. С другой стороны, известны геосинклинальные прогибы, например Карпаты, где мощность не более 5–7 км, что часто встречается на платформе. Но не следует и преуменьшать различие платформ и геосинклиналей. Последним свойственны не только большие мощности осадков и контрастное их изменение, но и сложная складчатость, а также интенсивный магматизм: излияние лав или внедрение крупных магматических тел — батолитов. Магматические породы земной коры различаются по химизму и структуре. В зависимости от химического состава магматические породы разделяются на четыре группы: кислые, средние, основные, ультраосновные (табл. 2). Кислыми именуются породы, в которых содержание SiO 2 достигает 70 %. Типичный представитель кислой породы — гранит. В средних по составу магматических породах кремнекислоты меньше 65 %, в основных — не более 50 %. Наконец, на земной поверхности, правда редко, встречаются и ультраосновные породы, в которых процентное содержание SiO 2 не превышает 40–45 %. Содержание магния и железа изменяется в обратной последовательности. В ультраосновных их больше всего, а в кислых — всего лишь несколько процентов. Как кислые, так и основные породы могут различаться и по содержанию щелочных элементов (Na, К) и т. п. Если магматические породы излились на земную поверхность и застыли в виде лав, то они плохо раскристаллизованы, минералы почти не видны. Такие породы называются эффузивными. Магматические породы, застывшие на глубине нескольких километров, именуются интрузивными. В зависимости от химического состава эффузивные породы разделяются на кислые (липариты), средние (андезиты) и основные (базальты). Разумеется, существует огромное число переходных разностей, для которых петрографы предложили специальные наименования. Сравнительное изучение геологических структур с разной историей позволило установить, что развитие нашей планеты имело определенную периодичность. Длительные циклы преобладавшего погружения, сопровождавшегося накоплением осадков, сменялись более кратковременными периодами поднятий, складкообразования и размыва. Обнаружены циклы разных порядков. Наиболее крупными за последние 500–600 млн. лет геологической истории являются каледонский, герцинский и альпийский геотектонические этапы. Длительность каждого из них приблизительно 180 млн. лет. В последнее десятилетие выделен так называемый байкальский геотектонический этап, который предшествовал каледонскому, однако по длительности он равен или даже больше каледонского, герцинского и альпийского, вместе взятых. По-видимому, байкальский этап отвечает более крупному мегаэтапу высшего порядка. Геотектонические этапы не совпадают с эрами, выделенными на основании изучения истории органической жизни планеты. После окончания геотектонического этапа, часто завершавшегося горообразованием, одни геосинклинальные зоны вновь вовлекались в прогибание, другие же длительное время оставались как бы законсервированными — становились платформами. Такие зоны получили название по времени последнего этапа прогибания. Геосинклинальные зоны, прекратившие прогибаться и смятые в складки к концу байкальского этапа, стали именоваться байкалидами, к концу каледонского — каледонидами, далее — герцинидами и альпидами. Третья стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с палеозойской эры, т. е. примерно 0,5–0,3 млрд. лет назад, Земля вступила в четвертую стадию эволюции, которую с полным правом можно именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую (5–7 км), океаническую. Главной особенностью процесса океанообразования является то, что, начавшись, вероятно, в пределах относительно узкой, может быть линейной, зоны, он затем постепенно расширялся, захватив к настоящему времени пространство, превышающее площадь материков. Какие глубинные условия определяли начало процесса океанообразования, остается пока неясным. Несомненно лишь одно, что в основе этих процессов лежит разогревание Земли в результате радиоактивного распада. Обширные глубоководные океанические равнины — это, очевидно, былые платформы. Недаром многие геологи по аналогии с континентами называют их талассократонами (опустившимися платформами). О сходстве океанических равнин с платформами материков свидетельствуют их огромные размеры, отсутствие в них каких-либо активных тектонических движений, например сейсмической деятельности. Протяженные полосы мелководий и островов в океанах (подводный Гавайский хребет) — это, возможно, некогда существовавший геосинклинальный пояс. Не случайно именно к этим зонам приурочено большинство находок в океанах кислых пород (гранитов). Океаническую стадию следует рассматривать как завершение гигантского мегацикла в истории Земли, длившегося 4–5 млрд. лет. В течение этого периода в коре близ ее поверхности накапливались такие элементы, как кремнезем, щелочи, кальций, создавался гранитный слой, выделялась вода. Некоторое количество воды достигло земной поверхности, но большую ее часть, как губка, впитал в себя верхний слой мантии. Возник мощный слой обводненных ультраосновных пород. В океаническую стадию жизни Земли вода, наконец, была «выжата» на поверхность Земли. Может быть, впервые за всю многомиллиардную жизнь коры слагающие ее химические элементы расположились в закономерной последовательности: вверху самые легкие, ниже тяжелые и плотные — вода, под ней кремнезем, еще ниже алюмосиликаты и внизу силикаты с высоким содержанием магния и железа. На рис. 1 показана относительная длительность каждой из названных стадий эволюции нашей планеты. Наиболее продолжительная — геосинклинальная. В дальнейшей геологической эволюции нашей планеты, по-видимому, будет продолжаться рост океанов за счет континентов. Значит, материки со временем окажутся почти полностью поглощенными Мировым океаном? А где же тогда будут жить люди? Однако столь мрачная перспектива не должна нас пугать. Процесс поглощения континентов океанами идет крайне медленно даже для геологического летосчисления. Для полного уничтожения континентов потребуются еще сотни миллионов лет. Некоторое представление о древних космических катастрофах дает обследование наиболее крупных метеоритных кратеров, сохранившихся до наших дней. Следами падения крупных метеоритов на земной поверхности являются необычные кольцевые геологические структуры, получившие название «астроблемы» — звездные раны. Внутри астроблем наблюдаются радиальная деформация пластов раздробленных пород, необычные минералы и другие признаки, свидетельствующие о мощном ударном взрыве. Сейчас на Земле обнаружено более 100 таких кольцевых структур — мест падения гипотетических гигантских метеоритов. Но следует заметить, что кольцевые структуры во многом сходны с нарушениями земной поверхности, возникающими после некоторых вулканических извержений, — вулканическими кальдерами. Поэтому вопрос о том, является ли данная кольцевая геологическая структура результатом падения метеорита или вулканического извержения, в каждом отдельном случае специально изучается. Происхождение некоторых из них остается дискуссионным на протяжении многих десятков лет. Причем сомнительны наиболее крупные кольца, которые образовались десятки и сотни миллионов лет назад. Так, существует предположение, что залив Св. Лаврентия в Канаде — часть гигантского ударного кратера диаметром около 290 км и глубиной порядка 6 км. Метеоритные кратеры подразделяются на два типа. Первый тип — ударные кратеры диаметром не более 100 м. Они образуются при частичном дроблении и выбрасывании горных пород и возникли вследствие падения относительно небольших метеоритов, летевших со скоростью не более 2,5 км/с. Второй тип — взрывные кратеры, возникающие при взрыве метеорита в момент его соударения с земной поверхностью. Крупный метеорит, подлетающий к Земле со скоростью 3—20 км/с, при столкновении с ней взрывается в результате торможения о горные породы. Вещество его полностью или почти полностью испаряется при взрыве. Взрывные кратеры бывают заполнены раздробленной породой, которая нередко оплавлена. В некоторых наиболее крупных кратерах обнаружены своеобразные породы, получившие название импакитов. Они почти целиком состоят из переплавленных пород, застывших в виде стекла. В небольшом количестве содержатся в них и обломки нерасплавленных пород. Горные породы, подвергшиеся метеоритному взрыву, разбиваются коническими трещинами. Вершины трещин конусов разрушения указывают направление, откуда пришла ударная волна. Импакиты и конусы разрушения являются доказательством метеоритного происхождения древнего кратера. Расскажем о некоторых наиболее крупных космических катастрофах на нашей планете. Самый крупный из достоверных метеоритных кратеров — Попигайская котловина. Она расположена на севере Сибирской платформы, в бассейне реки Хатанги, в долине ее правого притока реки Попигай. Размеры внутреннего кратера составляют 75 км, а диаметр внешнего достигает 100 км. Катастрофа произошла 30 млн. лет назад. Космическое тело с большой скоростью пробило толщу осадков в 1200 м и затормозилось в породах фундамента Сибирской платформы (рис. 3). По предварительным оценкам, энергия взрыва достигала 10 23 Дж, т. е. была в 1000 раз больше, чем при самом сильном вулканическом взрыве. Об условиях, существовавших в эпицентре в момент взрыва, можно судить по тому, что в кратере найдены возникшие при катастрофе минералы. Рис. 3. Схема образования Попигайского метеоритного кратера и его предполагаемое строение (по В.Л. Масайтису) а — столкновение метеорита с поверхностью Земли и торможение; б — испарение метеорита и плавление окружающих пород; в — разогрев газов, выброс раздробленных и частично расплавленных пород; г — падение материалов выброса в кратер и за его пределы; д — подъем основания кратера и выдавливание части расплава к поверхности. 1 — осадочные породы; 2 — фундамент; 3 — надвиги; 4 — раздробленные породы в начальной стадии выброса; 5 — трещины; 6 — расплавленные породы; 7 — Раздробленные породы, заполняющие кратер; 8 — предполагаемая гранича зоны трещиноватых пород фундамента; 9 — выжатый к поверхности Расплав (импакиты). (Вертикальный и горизонтальный масштабы примерно одинаковы) Такие минералы удалось получить искусственным путем при ударных давлениях в 1 млн. бар и температуре около 1000 °C. Выброшенные во время взрыва крупные глыбы кристаллических пород фундамента платформы разлетелись на расстояние до 40 км от края кратера. Космический взрыв вызвал расплавление горных пород, в результате чего образовалась лава с высоким содержанием кремнезема (65 %), резко отличная по составу от глубинных базальтовых излияний Сибирской платформы. Второй по величине метеоритный кратер расположен вблизи города Горького. С помощью геологической съемки и буровых работ была обнаружена Пучеж-Катунская впадина диаметром около 100 км, вероятно вызванная падением метеорита. Диаметр около 50 км имеет Карский кратер на хребте Пай-Хой. Он заполнен образовавшимися при взрыве обломками пород, частично переплавленными и застывшими в виде стекловидной массы. В 1920 г. известный финский ученый-геолог П. Эскола обследовал северную часть Ладожского озера. Он обратил внимание на необычную лаву около озера Янисъярви, которая по составу очень напоминала импакиты взрывных кратеров. Озеро Янисъярви, расположенное в 95 км от города Сортавалы, имеет размер 14х26 км и, вероятно, является древним метеоритным кратером. В пользу этого свидетельствуют также два скалистых лавовых островка в центре озера. На Украине обнаружен Болтышский кратер (диаметром около 25 км), возникший в результате падения метеорита более 100 млн. лет назад. Самый древний метеоритный кратер (диаметр 20 км) в нашей стране находится в Карелии, его возраст более 1 млрд. лет, В Винницкой обл., около села Ильинцы, недавно обнаружен метеоритный кратер диаметром в 4 км. Он образовался около 100 млн. лет назад. Кратеры диаметром 3–5 км обнаружены к востоку от города Винницы и к юго-востоку от Гдова. В районе Калуги погребен взрывной кратер с возрастом 250 млн. лет. Поперечник его достигает 15 км. За рубежом хорошо исследован крупный метеоритный кратер Риз, внутри которого расположен город Дордлинген (ФРГ). Кратер образовался в результате удара и взрыва гигантского метеорита около 15 млн. лет назад. Возникшая котловина достигает в поперечнике 20 км. Сейсморазведочные работы, проведенные в котловине, показали, что под 35-метровым слоем озерных осадков скрыта внутренняя подземная котловина. Ее глубина не менее 700 м, а поперечник около 10 км. Кратер заполнен раздробленной, спекшейся и частично расплавленной породой. Разрыхленная порода, заполняющая кратер, обусловливает некоторое понижение поля силы тяжести по сравнению с окружающей местностью. Такое уменьшение соответствует дефициту массы в кратере 30–60 млрд. т. Следовательно, в момент взрыва было выброшено до 20 км 3 породы. Во Франции метеоритный кратер Рошешуар (диаметр около 15 км) образовался 150–170 млн. лет назад. К «молодым» кратерам — возраст до 15 млн. лет — относятся Босумтви в Гане (Западная Африка), в котором расположено озеро (диаметр 9,8 км, глубина 350 м), и Чабб на полуострове Унгава в Канаде (диаметр 3,4 км, глубина 390 м). Метеоритный кратер Ротер Камм, обнаруженный в 1965 г. в Юго-Западной Африке, в 95 км от устья реки Оранжевой, достигает 30 м. Дно кратера засыпано, следовательно, общая глубина его еще больше. Поперечные размеры кольцевого вала, сложенного обломками гнейсов, около 2,4 км, высота над окружающей местностью 90 м. Кратер Локар в Индии имеет поперечник 1,8 км, а глубину 120 м. В конце прошлого столетия в США были начаты исследования кратера диаметром 1,2 км и глубиной около 170 м. Вал, окаймляющий кратер, возвышается на 40–50 м (рис. 4). Это — так называемый Каньон-Дьябло в Штате Аризона. Согласно легенде местных индейцев, он образовался в месте, куда в далеком прошлом с неба спустился на огненной колеснице бог. Это наталкивало на мысль о метеоритном происхождении кратера. В радиусе около 10 км были обнаружены многочисленные, весом около 20 т обломки железного метеорита, но, очевидно, они представляют собой лишь ничтожную часть упавшего гигантского метеорита. Попытки найти внутри кратера основную массу метеорита успехами не увенчались; вероятно, он образован железоникелевым метеоритом весом примерно 5 млн. т. Воронка возникла от обломка весом 63 тыс. т и диаметром 30 м; энергия, освободившаяся при его ударе, сопоставима с энергией взрыва 3,5 млн. т тротила. Рис. 4. Аэрофотоснимок метеоритного кратера Каньон-Дьябло (штат Аризона, США) Группа кольцевых структур метеоритного происхождения известна на острове Сааремаа (Эзель) в Балтийском море. Углубление имеет здесь диаметр 110 м, оно обрамлено валом, образованным из приподнятых пластов доломита высотой 6–7 м. Еще шесть округлых впадин расположено в окрестностях главного кратера на площади 0,25 км 2 . Их размеры: диаметр 16–20 м, глубина до 4–5 м. Удивительное кольцо Вредефорт найдено в Южной Африке. Оно образовано куполом гранитов диаметром около 40 км. Купол окружен венцом древних осадочных пород шириной около 16 км. Можно оценить размеры и скорость падения астероида, вызвавшего образование этого кольца. При скорости 20 км/с он должен иметь диаметр 2,3 км и массу 3·10 10 т. Энергия его падения примерно в 50 раз превосходила энергию крупнейших землетрясений и соответствовала взрыву бомбы с зарядом 1,4·10 6 млн. т. В Австралии находится одна из астроблем — Госсес Блафф. Она представляет собой небольшой холм, окруженный кольцом раздробленных пород, диаметром около 14 км. Возраст 130 млн. лет. В районе Госсес Блафф для исследования строения земной коры проводилась сейсмическая разведка и бурение скважин, было произведено несколько взрывов. Это позволило установить подземный рельеф кратера. На глубине расположена полусферическая чаша радиусом 2,3 км, окруженная более мелкой блюдцеобразной депрессией радиусом около 11 км. Найдены конусы сотрясения, импакиты; энергия ударного процесса составила 10 20 Дж. В Южном Техасе (США), в бассейне Сиерра-Мадре в горных породах, образовавшихся из древних морских отложений, известен вал в виде кольца диаметром около 10 км. В котловине внутри вала слои горных пород залегают почти горизонтально и лишь в центре их прорывает купол, сложенный известняками и возвышающийся на 450 м. Пласты здесь сильно разрушены, а в известняке обнаружены конические системы трещин, вызванные мощной ударной волной. Американский геолог А. Келли считает, что в данном случае астроблема образовалась в результате падения кометы в древний океан, имевший здесь глубину 2–3 км. Ядро кометы с космической скоростью ударило в кору, и произошел гигантский взрыв. Ударная волна, пройдя через воду, ослабла и смогла вызвать катастрофические разрушения дна лишь в эпицентре. Одновременно в океане образовалась огромная водяная воронка: взрыв на какое-то мгновение раздвинул толщу воды. Вода увлекла за собой донные осадки, отложив их в виде кольцевого вала. Освобожденное от гидростатического давления морское дно вспучилось в эпицентре и поднялось. При оседании водяной воронки вода принесла назад взмученный материал, который образовал слои новых осадков, сгладившие рельеф подводного кратера. Через много десятков миллионов лет кратер поднялся на поверхность, где затем разрушился. В Антарктиде, на Земле Уилкса, найдена скрытая подо льдами гигантская астроблема, имеющая около 240 км в диаметре. Интересна история открытия этого кратера. В 1958–1960 гг. во время работ французской и американской экспедиций здесь были установлены некоторые аномалии силы тяжести. Загадка их разрешилась при сопоставлении данных обеих экспедиций. Район отрицательной аномалии силы тяжести имеет форму круга диаметром 240 км, а сама аномалия очень похожа на те, которые наблюдаются вблизи больших метеоритных кратеров. Удалось установить, что аномалия частично вызвана существованием впадины внутри кратера, а частично — разрыхленными при падении метеорита породами. Открытие этого кратера имело большое значение для гипотезы об образовании тектитов — загадочных по своему происхождению обломков темно-зеленых стекловатых камней. Одни исследователи считают их особым классом метеоритов, другие — продуктом вулканических извержений на Луне. Американский ученый В. Бернс полагает, что тектиты возникают из горных пород, расплавленных при ударе крупных метеоритов и с чудовищной силой выплеснутых из кратера. Слабым местом этой гипотезы было отсутствие молодых метеоритных кратеров в Австралии и Тасмании, где тектиты широко распространены Кратер, обнаруженный в Антарктиде, оказался как раз в центре Австрало-Тасманийской дуги, изобилующей тектитами. Тем самым гипотеза В. Бернса получила новое подтверждение. Ряд крупных кратеров метеоритного происхождения найден в последнее время в Канаде. К ним относятся, в частности, кратеры двойного озера Клируотер. Оба озера, по-видимому, образовались от ударов двух метеоритов. Диаметр Восточного Клируотера — около 28 км, Западного — около 32 км. Самой крупной кольцевой структурой предположительно метеоритного происхождения является здесь кольцо Маникуаган-Мушалаган, имеющее диаметр около 65 км. С падением метеорита связывают крупнейшее месторождение никеля Садбери, расположенное в Канаде. Рудный бассейн Садбери имеет овальную форму размером 60х27 км. Он располагается на поверхности Канадского кристаллического щита, который сложен гранитами и кварцитами. Строение бассейна напоминает слоеный пирог: внизу залегают рудоносные породы — микропегматиты, диориты и др., над ними — туф опанинг, перекрытый слоями шиферных сланцев и песчаников. Недавно была выдвинута гипотеза о том, что бассейн Садбери появился в результате падения гигантского метеорита 1700 млн. лет назад (возраст определен методами абсолютной геохронологии). К этой гипотезе привели попытки расшифровать происхождение туфа опанинг. По строению он представляет собой брекчию — раздробленную и вновь сцементированную породу. Обломки брекчии состоят из коренных гранитов, а также стекла — расплавленных и быстро остывших, не успевших раскристаллизоваться минералов. По этим признакам опанинг очень напоминает материал из известных метеоритных кратеров. Сходство это недавно было подтверждено находкой в Садбери кристаллов кварца, обладающих своеобразной ориентировкой трещин, которые возникают в кварце только под воздействием ударных волн, создающих чрезвычайно высокие давления, при ядерных взрывах или при падении гигантских метеоритов. Очевидно, удар гигантского метеорита вызвал активную вулканическую деятельность, в результате поднялись глубинные расплавленные массы, содержавшие большое количество металлов. Имеются данные о том, что в прошлом в некоторых случаях метеоритные дожди достигали чрезвычайно высокой плотности и захватывали огромные площади. Их выпадение могло приобретать характер страшного стихийного бедствия. Так, в Северной Америке, в районе полуострова Флорида, на побережье Атлантического океана произошло падение, по-видимому, одного из наиболее крупных астероидов. В штатах Северная и Южная Каролина была проведена аэрофотосъемка, обнаружившая ряд круглых и яйцеобразных воронок, напоминающих по виду кратеры метеоритного происхождения. Крупных кратеров — около 140 тыс., в том числе около 100 диаметром более 1,5 км. Невозможно установить число мелких. Предполагают, что их более полумиллиона. Площадь, подвергшаяся камнепаду, достигала 200 тыс. км 2 . Кратеры расположены дугой, в центре которой в