Загрязнение автотранспортом окружающей среды

Загрязнение автотранспортом окружающей среды

Загрязнение автотранспортом окружающей средыЗагрязнение автотранспортом окружающей среды. Автомобильный транспорт наиболее агрессивен в сравнении с другими видами транспорта по отношению к окружающей среде. Он является мощным источником ее химического (поставляет в окружающую среду громадное коли­чество ядовитых веществ), шумового и механического загрязнения. Следует подчеркнуть, что с увеличением автомобильного парка уровень вредного воз­действия автотранспорта на окружающую среду интенсивно возрастает. Так, если в начале 70-х годов ученые-гигиенисты определили долю загрязнений, вносимых в атмосферу автомобильным транспортом, в среднем равной 13%, то в настоящее время она достигла уже 50% и продолжает расти. А для горо­дов и промышленных центров доля автотранспорта в общем объеме загрязне­ний значительно выше и доходит до 70% и более, что создает серьезную эко­логическую проблему, сопровождающую урбанизацию.

В автомобилях имеется несколько источников токсичных веществ, основными из которых являются три: отработавшие газы картерные газы топливные испарения. Рис. Источники образования токсичных выбросов. Наибольшая доля химического загрязнения окружающей среды авто­мобильным транспортом приходится на отработавшие газы двигателей внут­реннего сгорания. Теоретически предполагается, что при полном сгорании топлива в ре­зультате взаимодействия углерода и водорода (входят в состав топлива) с кислородом воздуха образуется углекислый газ и водяной пар. Реакции окис­ления при этом имеют вид: С+О2=СО2, 2Н2+О2=2Н2. Практически же вследствие физико-механических процессов в цилинд­рах двигателя действительный состав отработавших газов очень сложный и включает более 200 компонентов, значительная часть которых токсична. Таблица. Ориентировочный состав отработавших газов автомобильных двигателей. Пределы концентраций компонентов. Бензиновый, с искр. зажигание. Двуокид углерода, СО2. Углеводороды, СН (суммарно) Оксид углерода, СО. Оксид азота, NOx. Оксиды серы (сумм.) Состав отработавших газов двигателей на примере легковых автомобилей без их нейтрализации можно представить в виде диаграммы. Рис. Составные части отработавших газов без применения нейтрализации. Как видно из таблицы и рисунка, состав отработавших газов рассматриваемых типов двигателей существенно различается прежде всего по концентрации продуктов неполного сгорания – оксида углерода, углеводородов, оксидов азота и сажи. К токсичным компонентам отработавших газов относятся: оксид углеро­да углеводороды оксиды азота оксиды серы альдегиды сажа бенз(а)пирен со­единения свинца. Различие в составе отработавших газов бензиновых и дизельных двигателей объясняется большим коэффициентом избытка воз­духа ? (отношение действительного количества воздуха, поступающего в ци­линдры двигателя, к количеству воздуха, теоретически необходимому для сго­рания 1 кг топлива) у дизельных двигателей и лучшим распыливанием топли­ва (впрыск топлива). Кроме того, у бензинового карбюраторного двигателя смесь для раз­личных цилиндров неодинакова: для цилиндров, расположенных ближе к кар­бюратору, – богатая, а для удаленных от него – беднее, что является недо­статком бензиновых карбюраторных двигателей. Часть топливовоздушной смеси у карбю­раторных двигателей поступает в цилиндры не в парообразном состоянии, а в виде пленки, что также увеличивает содержание токсичных веществ вслед­ствие плохого сгорания топлива. Этот недостаток не характерен для бензино­вых двигателей с впрыском топлива, так как подача топлива осуществляется непосредственно к впускным клапанам. Причиной образования оксида углерода и частично углеводородов явля­ется неполное сгорание углерода (массовая доля которого в бензинах дости­гает 85%) из-за недостаточного количества кислорода. Поэтому концентрации оксида углерода и углеводородов в отработавших газах возрастают при обога­щении смеси (? 1, вероятность указанных превращений во фронте пламени мала и в отработавших газах содержится меньше СО, но в цилиндрах находятся дополнительные источники его появления: низкотемпературные участки пламени стадии воспламенения топлива капли топлива, поступающие в камеру на поздних стадиях впрыска и сгорающие в диффузионном пламени при недостатке кислорода частицы сажи, образовавшейся в период распространения турбулент­ного пламени по гетерогенному заряду, в котором, при общем избытке кисло­рода могут создаваться зоны с его дефицитом и осуществляться реакции типа: 2С+О2 > 2СО. Диоксид углерода СО2 является не токсичным, но вредным веществом в связи с фиксируемым повышением его концентрации в атмосфере планеты и его влиянием на изменение климата. Основная доля образовавшихся в ка­мере сгорания СО окисляется до СО2, не выходя за пределы камеры, ибо за­меренная объемная доля диоксида углерода в отработавших газах составля­ет 10-15%, т. е. в 300…450 раз больше, чем в атмосферном воздухе. Наиболь­ший вклад в образование СО2 вносит необратимая реакция: СО + ОН > СО2 + Н. Окисление СО в СО2 происходит в выпускной трубе, а также в нейтра­лизаторах отработавших газов, которые устанавливаются на современных автомобилях для принудительного окисления СО и несгоревших углеводородов до СО2 в связи с необходимостью выполнения норм ток­сичности. Углеводороды. Углеводороды – многочисленные соединения различного типа (например, C6H6 или C8H18) состоят из исходных или распав­шихся молекул топлива, и их содержание увеличивается не только при обога­щении, но и при обеднении смеси (а > 1,15), что объясняется повышенным количеством непрореагировавшего (несгоревшего) топлива из-за избытка воздуха и пропусков воспламенения в отдельных цилиндрах. Образование угле­водородов происходит также из-за того, что у стенок камеры сгорания темпе­ратура газов недостаточно высока для сгорания топлива, поэтому здесь пла­мя гасится и полного сгорания не происходит. Наиболее токсичны полициклические ароматические углеводороды. В дизельных двигателях легкие газообразные углеводороды образуются при термическом распаде топ­лива в зоне срыва пламени, в ядре и в переднем фронте факела, на стенке на стенках камеры сгорания и в результате вторичного впрыскивания (подвпрыскивания). Твердые частицы включают нерастворимые (твердый углерод, оксиды металлов, диоксид кремния, сульфаты, нитраты, асфальты, соединения свин­ца) и растворимые в органическом растворителе (смолы, фенолы, альдегиды, лак, нагар, тяжелые фракции, содержащиеся в топливе и масле) вещества. Твердые частицы в отработавших газах дизелей с наддувом состоят на 68…75% из нерастворимых веществ, на 25…32% – из растворимых. Сажа (твердый углерод) является основным компонентом нераствори­мых твердых частиц. Образуется при объемном пиролизе (термическом раз­ложении углеводородов в газовой или паровой фазе при недостатке кислоро­да). Механизм образования сажи включает несколько стадий: образование зародышей рост зародышей до первичных частиц (шестиугольных пластинок гра­фита) увеличение размеров частиц (коагуляция) до сложных образований–конгломератов, включающих 100… 150 атомов углерода выгорание. Выделение сажи из пламени происходит при ? = 0,33…0,70. В от­регулированных двигателях с внешним смесеобразованием и искровым зажи­ганием (бензиновых, газовых) вероятность появления таких зон незначитель­на. У дизелей локальные переобогащенные топливом зоны образуются чаще и в полной мере реализуются перечисленные процессы сажеобразования. Поэтому выбросы сажи с отработавшими газами у дизелей больше, чем, у дви­гателей с искровым зажиганием. Образование сажи зависит от свойств топли­ва: чем больше отношение С/Н в топливе, тем выход сажи выше. В состав твердых частиц кроме сажи входят соединения серы, свинца. Оксиды азота NOx представляют набор следующих соединений: N2О, NO, N2О3, NО2, N2О4 и N2O5. В отработавших газах автомобильных двигателей преобла­дает NO (99% в бензиновых двигателях и более 90% в дизелях). В камере сгорания N0 может образовываться: при высокотемпературном окислении азота воздуха (термический NО) в результате низкотемпературного окисления азотсодержащих соеди­нений топлива (топливный NO) из-за столкновения углеводородных радикалов с молекулами азота в зоне реакций горения при наличии пульсации температуры (быстрый NO) В камерах сгорания доминирует термический NO, образующийся из мо­лекулярного азота во время горения бедной топливовоздушной смеси и сме­си, близкой к стехиометрической, за фронтом пламени в зоне продуктов сго­рания. Преимущественно при сгорании бедных и умеренно богатых смесей (? > 0,8) реакции происходят по цепному механизму: О + N2 > NO + N N + О2 > NO+О N+OH > NO+H. В богатых смесях (а. N2 + ОН > NO + NH NH + О > NО + ОН. В бедных смесях выход NО определяется максимальной температурой цепочно-теплового взрыва (максимальная температура 2800…2900° К), т. е. кинетикой образования. В богатых смесях выход NО перестает зависеть от максимальной температуры взрыва и определяется кинетикой разложения и содержание NО уменьшается. При горении бедных смесей значительно вли­яние на образование NО оказывает неравномерность температурного поля в зоне продуктов сгорания и присутствие паров воды, которая в цепной реак­ции окисления NOx является ингибитором. Высокая интенсивность процесса нагревания, а затем охлаждения смеси газов в цилиндре ДВС приводит к образованию существенно неравновесных концентраций реагирующих веществ. Происходит замораживание (закалка) образовавшегося NО на уровне максимальной концентрации, кото­рый обнаруживается в отработавших газах из-за резкого замедления скорости разложения NО. Основными соединениями свинца в отработавших газах автомобилей являются хлориды и бромиды, а также (в меньших количествах) оксиды, суль­фаты, фториды, фосфаты и некоторые их промежуточные соединения, которые при температуре ниже 370°С находятся в виде аэрозолей или твердых частиц. Около 50% свинца остается в виде нагара на деталях двигателя и в выхлопной трубе, остаток уходит в атмосферу с отработавшими газами. Большое количество соединений свинца выбрасывается в воздух при использовании этого металла в качестве антидетонатора. В настоящее время соединения свинца в качестве антидетонаторов не применяются. Оксиды серы. Оксиды серы образуются при сгорании серы, содержащейся в топливе по механизму схожему с образованием СО. Концентрацию токсичных компонентов в отработавших газах оценивают в объемных процентах, миллионных долях по объему – млн -1, (частей на мил­лион, 10000 ррm = 1% по объему) и реже в миллиграммах на 1 л отработавших газов. Кроме отработавших газов, источниками загрязнения окружающей среды автомобилями с карбюраторными двигателями являются картерные газы (при отсутствии замкнутой вентиляции картера двигателя, а также испарение топлива из топливной системы. Давление в картере бензинового двигателя, за исключением такта впуска, значительно меньше, чем в цилиндрах, поэтому часть топливовоздушной смеси и отработавших газов прорывается через неплотности цилиндропоршневой группы из камеры сгорания в картер. Здесь они смешиваются с па­рами масла и топлива, смываемого со стенок цилиндра холодного двигателя. Картерные газы разжижают масло, способствуют конденсации воды, старе­нию и загрязнению масла, повышают его кислотность. В дизельном двигателе во время такта сжатия в картер прорывается чи­стый воздух, а при сгорании и расширении – отработавшие газы с концентрациями токсичных веществ, пропорциональными их концентрациям в цилинд­ре. В картерных газах дизеля основные токсичные компоненты – оксиды азота (45…80%) и альдегиды (до 30%). Максимальная токсичность картерных газов дизелей в 10 раз ниже, чем отработавших газов, поэтому доля картерных газов у дизеля не превышает 0,2…0,3% суммарного выброса токсичных веществ. Учитывая это, в автомобильных дизелях принудительную вентиляцию карте­ра обычно не применяют. Основные источники топливных испарений – топливный бак и система питания. Более высокие температуры подкапотного пространства, обусловленные более нагруженными режимами работы двигателя и относительной стесненнос­тью моторного отсека автомобиля, вызывают значительные топливные испаре­ния из топливной системы при остановке горячего двигателя. Учитывая большой выброс углеводородный соединений в результате топливных испарений все производители автомобилей в настоящее время применяют специальные системы их улавливания. Кроме углеводородов, поступающих из системы питания автомобилей, значительное загрязнение атмосферы летучими углеводородами автомобиль­ного топлива происходит при заправке автомобилей (в среднем 1,4 г СН на 1 л заливаемого топлива). Испарения вызывают также физические изменения в самих бензинах: вследствие изменения фракционного состава повышается их плотность, ухудшаются пусковые качества, снижается октановое число бен­зинов термического крекинга и прямой перегонки нефти. У дизельных автомо­билей топливные испарения практически отсутствуют вследствие малой ис­паряемости дизельного топлива и герметичности топливной системы дизеля. Оценка уровня загрязнения атмосферы производится сопоставлением измеренной и предельно допустимой концентрации (ПДК). Значения ПДК устанавливаются для различных токсичных веществ при постоянном, среднесуточном и разовом действиях. В таблице приведены среднесуточные значения ПДК для некоторых токсичных веществ. Таблица. Допустимые концентрации токсичных веществ. Оксид углерода, СО. Бенз (а) пирен, С20Н12. По данным исследований, легковой автомобиль при среднегодовом про­беге 15 тыс. км «вдыхает» 4,35 т кислорода и «выдыхает» 3,25 т углекислого газа, 0,8 т оксида углерода, 0,2 т углеводородов, 0,04 т оксидов азота. В отли­чие от промышленных предприятий, выброс которых концентрируется в опре­деленной зоне, автомобиль рассеивает продукты неполного сгорания топлива практически по всей территории городов, причем непосредственно в призем­ном слое атмосферы. Удельный вес загрязнений автомобилями в крупных городах достигает больших значений. Таблица. Доля автомобильного транспорта в общем загрязнении атмосферы в крупнейших городах мира, % Токсичные компоненты отработавших газов и испарения из топливной системы отрицательно воздействуют на организм человека. Степень воздей­ствия зависит от их концентраций в атмосфере, состояния человека и его ин­дивидуальных особенностей. Оксид углерода. Оксид углерода (СО) – бесцветный, не имеющий запаха газ. Плот­ность СО меньше, чем воздуха, и поэтому он легко может распространятся в атмосфере. Поступая в организм человека с вдыхаемым воздухом, СО сни­жает функцию кислородного питания, вытесняя кислород из крови. Это объясняет­ся тем, что поглощаемость СО кровью в 240 раз выше поглощаемости кисло­рода. Прямое влияние оказывает СО на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т.д. В результате кислородного голодания токсический эффект СО связан с непосредственным влиянием на клетки центральной нервной системы. Повышение концентрации окиси углерода опасны и тем, что в результате кислородного голодания организма ослабляется внимание, замедля­ется реакция, падает работоспособность водителей, что влияет на безопас­ность дорожного движения. Характер токсического воздействия СО можно проследить по диаграмме, представленной на рисунок. Рис. Диаграмма воздействия СО на организм человека: 1 – смертельный исход; 2 – смертельная опасность; 3 – головная боль, тошнота; 4 – начало токсического действия; 5 – начало заметного действия; 6 – незаметное действие; Т,ч — время воздействия. Из диаграммы следует, что даже при незначительной концентрации СО в воздухе (до 0,01%) длительное воздействие его вызывает головную боль и приводит к снижению работоспо­собности. Более высокая концентрация СО (0,02…0,033%) приводит к развитию атеросклероза, возникновению инфаркта миокарда и развитию хронических легочных заболеваний. Причем особенно вредно воздействие СО на людей, страдающих коронарной недос­таточностью. При концентрации СО около 1% наступает потеря сознания уже через несколько вздохов. СО ока­зывает негативное влияние и на нервную систему человека, вызы­вая обмороки, а также изменения цветовой и световой чувстви­тельности глаз. Симптомы отравления СО – головная боль, серд­цебиение, затрудненное дыхание и тошнота. Следует отметить, что при сравнительно небольших концентрациях в атмосфере (до 0,002%), СО связанный с гемоглобином, посте­пенно выделяется и кровь человека очищается от него на 50% каж­дые 3-4 ч. Углеводородные соединения. Углеводородные соединения по их биологическому действию изуче­ны пока еще недостаточно. Однако экспериментальные исследования пока­зали, что полициклические ароматические соединения вызывали раку живот­ных. При наличие определенных атмосферных условий (безветрие, напряжен­ная солнечная радиация, значительная температурная инверсия) углеводоро­ды служат исходными продуктами для образования чрезвычайно токсичных продуктов – фотооксидантов, обладающих сильными раздражающим и обще­токсичным действием на органы человека, и образуют фотохимический смог. Особенно опасными из группы углеводородов являются канцерогенные веще­ства. Наиболее изученным является многоядерный ароматический углеводо­род бенз(а)пирен, известный еще под названием 3,4 бенз(а)пирен, – вещество, представляющее собой кристаллы желтого цвета. Установлено, что в местах непосредственного контакта канцерогенных веществ с тканью появляются злокачественные опухоли. В случае попадания канцерогенных веществ, осев­ших на пылевидных частицах, через дыхательные пути в легкие они задержи­ваются в организме. Токсичными углеводородами являются также и пары бен­зина, попадающие в атмосферу из топливной системы, и картерные газы, вы­ходящие через вентиляционные устройства и неплотности в соединениях от­дельных узлов и систем двигателя. Оксид азота. Оксид азота – бесцветный газ, а диоксид азота – газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм чело­века соединяются с водой. При этом они образуют в дыхательных путях со­единения азотной и азотистой кислот, раздражающе действуя на слизистые оболочки глаз, носа и рта. Оксиды азота участвуют в процессах, ведущих к образованию смога. Опасность их воздействия заключается в том, что от­равление организма проявляется не сразу, а постепенно, причем нет каких-либо нейтрализующих средств. Сажа при попадании в организм человека вызывает негативные послед­ствия в дыхательных органах. Если относительно крупные частицы сажи раз­мером 2…10 мкм легко выводятся из организма, то мелкие размером 0,5…2 мкм задерживаются в легких, дыхательных путях, вызывают аллергию. Как любая аэрозоль, сажа загрязняет воздух, ухудшает видимость на дорогах, но, самое главное, на ней адсорбируются тяжелые ароматические-углеводороды, в том числе бенз(а)пирен. Сернистый ангидрид SО2. Сернистый ангидрид SО2 – бесцветный газ с острым запахом. Раз­дражающее действие на верхние дыхательные пути объясняется поглощение SO2 влажной поверхностью слизистых оболочек и образованием в них кислот. Он нарушает белковый обмен и ферментативные процессы, вызывает раз­дражение глаз, кашель. Диоксид углерода СО2. Диоксид углерода СО2 (углекислый газ) – не оказывает токсического действия на ор­ганизм человека. Он хорошо поглощается растениями с выделени­ем кислорода. Но при наличии в атмосфере земли значительного количества углекислого газа, поглощающего солнечные лучи, соз­дается парниковый эффект, приводящий к так называемому «теп­ловому загрязнению». Вследствие этого явления повыша­ется температура воздуха в нижних слоях атмосферы, происходит потепление, наблюдаются различные климатические аномалии. Кроме того, повышение содержания в атмосфере СО2 способствует образованию «озоновых» дыр. При снижении концентрации озона в атмосфере земли повышается от­рицательное воздействие жесткого ультрафиолетового излучения ни организм человека. Автомобиль является источником загрязнения воздуха также пылью. Во время езды, особенно при торможении, в результате трения покрышек о поверхность дороги образует­ся резиновая пыль, которая постоянно присутствует в воздухе на магистралях с интенсивным движением. Но покрышки не являются единственным источни­ком пыли. Твердые частицы в виде пыли выделяются с отработавшими газами, завозятся в город в виде грязи на кузовах автомобилей, образуются от истира­ния дорожного покрытия, поднимаются в воздух вихревыми потоками, возника­ющими при движении автомобиля, и т.д. Пыль отрицательно сказывается на здоровье человека, губительно действует на растительный мир. В городских условиях автомобиль является источником согревания ок­ружающего воздуха. Если в городе одновременно движется 100 тыс. автома­шин, то это равно эффекту, производимому 1 млн. л горячей воды. Отработав­шие газы автомобилей, содержащие теплый водяной пар, вносят свой вклад в изменение климата города. Более высокие температуры пара усиливают пе­ренос тепла движущейся средой (термическая конвекция), в результате чего количество осадков над городом возрастает. Влияние города на количество осадков особенно отчетливо видно по их закономерному увеличению, проис­ходящему параллельно с ростом города. За десятилетний период наблюде­ний в Москве, например, выпадало 668 мм осадков в год, в ее окрестностях – 572 мм, в Чикаго – 841 и 500 мм соответственно. К числу побочных проявлений деятельности чело­века относятся и кислотные дожди – растворенные в атмосферной влаге продукты сгорания – оксиды азота и серы. В основном это относится к промышлен­ным предприятиям, выбросы которых отводятся высо­ко над уровнем поверхности и в составе которых мно­го оксидов серы. Вредное воздействие кислотных дож­дей проявляется в уничтожении растительности и ускорении коррозии металлических конструкций. Важным фактором здесь является и то, что кислотные дожди способны вместе с движением атмосферных воздушных масс преодолевать расстояния в сотни и тысячи километров, пересекая границы государств. В периодической печати появляются сообщения о кислотных дождях, выпадающих в разных странах Европы, в США, Канаде и замеченных даже в таких заповедных зонах, как бассейн Амазонки. Неблагоприятное воздействие на окружающую среду оказывают температурные инверсии – особое состояние атмосферы, при котором температура воздуха с высотой увеличивается, а не уменьшается. Приземные температурные инверсии являются результатом ин­тенсивного излучения тепла поверхностью почвы, вследствие чего охлаждаются и поверхность, и прилега­ющие слои воздуха. Подобное состояние атмосферы препятствует развитию вертикальных движений воздуха, поэтому в нижних слоях накапливаются водяной пар, пыль, газообразные вещества, способствуя образованию слоев дымки и тумана, в том числе – смога. Широкое применение соли для борьбы с гололедом на автомобильных дорогах ведет к сокращению срока службы автомобилей, вызывает неожиданные изменения в придорожной флоре. Так, в Англии отмечено появле­ние вдоль дорог растений, характерных для морских побережий. Автомобиль – сильный загрязнитель водоемов, подземных водных ис­точников. Определено, что 1 л нефти может сделать непригодным для питья несколько тысяч литров воды. Большой вклад в загрязнение окружающей среды вносят процессы техни­ческого обслуживания и ремонта подвижного состава которые требуют энерге­тических затрат и связаны с большим водопотреблением, выбросом загрязняю­щих веществ в атмосферу, образованием отходов, в том числе токсичных. При выполнении технического обслуживания транспортных средств за­действованы подразделения, зоны периодических и оперативных форм тех­нического обслуживания. Выполнение ремонтных работ ведется на производ­ственных участках. Используемые в процессах ТО и ремонта технологичес­кое оборудование, станки, средства механизации и котельные установки яв­ляются стационарными источниками загрязняющих веществ. Таблица. Источники выделения и состав вредных веществ в производственных процессах на эксплуатационных и ремонтных предприятиях транспорта.